Pluralsight.Image.Classification.with.PyTorch-XQZT
Pl ralsight.Image.Classification.with.PyTorch-XQZT
Plu s ght.Image.Classification.with.PyTorch-XQZT
Plu ght.Image.Classification.with.PyTorch-XQZT
Plu s ght.Ima Classification th.PyTorch-XQZT
Plu sight.Ima Classification th.PyTorch-XQÜT
Pl sight.Ima Classification th.PyTorch-X ZT
Pl lsight.Ima Classification h.PyTorc QZT
P lsight.Im lassificatio . .PyT XQZT
alsight.Im lassificati .w -XQZT
P ght.Im .C ssifica h-XQZT
P als .C t wi ch-XQZT
P alsight.I atÜon.with QZT
P als g a at on.wit .
P ht age.Class at n.with. ch
als gh mage.Classi tion.with ch-XQZT
P als g Image.Classif ion.wit T h-XQZT
Pl ls .Imag ifi on. i yTo -XQZT
Pl l t.Im Cl ic n. PyTor XQZT
Plu ht.I e.Clas ca . .PyTor QZT
Pl ght. ge.Class ation h.PyT h ZT
Pl ight ge. ass atio th.Py ch- T
P a ght age. assi ati ith.P rch-XQZT
ral ht age. ssi at ith r h- T
urals t. ge.C ss ca . ith.Pyßo XQZT
lurals .I .C ic n. ith QZT
lurals g m fi
lu gh ge. ith. ZT
P Clas tion. ith.PyTo c
Plurals ght.I ass ication. ith.PyTorch-XQ
lurals ght.Image assi cation.with.PyTorch-XQZ
luralsight.Image.Cl si cation.with.PyTorc
uralsight.Image.ClasÜif a ion. ith.PyToÜch-XQZT
ralsight.Image.Classif at on. ith.PyTÜrch-XQZT
Pl lsight.Image.Class fi tißn.with.PyTßrch-XQZT
Pluralsight.Image.Classifi tßon.with.PyTo ch-XQZT
Pluralsight.Image.ClassificÜtion.with.PyTorc -XQZT
Pluralsight.Image.Classification.with.PyTorch-XQZT
Image Classification with PyTorch
794.9 MB
08/10/2019
Course # : N/A
Published : Aug 9 2019
Modified : N/A
URL : www.pluralsight.com/library/courses/image-classification-pytorch
Author : Janani Ravi
Duration : 3h 4m
Skill : Advanced
Exer/Code : [X]
Description:
Perhaps the most ground-breaking advances in machine learnings have come from
applying machine learning to classification problems. In this course, Image
Classification with PyTorch, you will gain the ability to design and implement
image classifications using PyTorch, which is fast emerging as a popular choice
for building deep learning models owing to its flexibility, ease-of-use and
built-in support for optimized hardware such as GPUs. First, you will learn how
images can be represented as 4-D tensors and then pre-processed to get the best
out of ML algorithms. Next, you will discover how to implement image
classification using Dense Neural Networks; you will then understand and
overcome the associated pitfalls using Convolutional Neural Networks (CNNs).
Finally, you will round out the course by understanding and using the most
powerful and popular CNN architectures such as VGG, AlexNet, DenseNet and so on,
and leveraging PyTorch s support for transfer learning. When you re finished
with this course, you will have the skills and knowledge to design and implement
efficient and powerful image classification solutions using a range of neural
network architectures in PyTorch.